AM

16 records found

Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of P ...
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto ...
Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered toward a wide range of applications, including pathogen control a ...
Transfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host genera, but their exact function has remained unclear for more than 50 years. Several hypotheses have been proposed, and the most widely accepted one is codon compensation, which suggests that pha ...
Bacteriophages (phages) are viruses that specifically attack bacteria. Their use as therapeutics, which constitutes a promising alternative to antibiotics, heavily relies on selecting effective lytic phages against the pathogen of interest. Current selection techniques are labori ...
In recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. Ho ...
The Klebsiella jumbo myophage ϕKp24 displays an unusually complex arrangement of tail fibers interacting with a host cell. In this study, we combine cryo-electron microscopy methods, protein structure prediction methods, molecular simulations, microbiological and machine learning ...
We are in the midst of a golden age of uncovering defense systems against bacteriophages. Apart from the fundamentalinterest in these defense systems, and revolutionary applications that have been derived from them (e.g. CRISPR-Cas9 andrestriction endonucleases), it is unknown ho ...

Editorial

Bacteriophages and Their Lytic Enzymes as Alternative Antibacterial Therapies in the Age of Antibiotic Resistance

Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host duri ...
The infection of a bacterium by a phage starts with attachment to a receptor molecule on the host cell surface by the phage. Since receptor-phage interactions are crucial to successful infections, they are major determinants of phage host range and, by extension, of the broader e ...
Antibiotic resistance is a major public health challenge worldwide, whose implications for global health might be devastating if novel antibacterial strategies are not quickly developed. As natural predators of bacteria, (bacterio)phages may play an essential role in escaping suc ...
An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the ...
The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologist ...

Phage Therapy

Going Temperate?

Strictly lytic phages have been consensually preferred for phage therapy purposes. In contrast, temperate phages have been avoided due to an inherent capacity to mediate transfer of genes between bacteria by specialized transduction – an event that may increase bacterial virulenc ...
Bacteriophages and their proteins have potential applications in biotechnology for the detection and control of bacterial diseases. Here, we describe the sequencing and genome annotations of two strictly virulent Escherichia coli bacteriophages that may be explored for biocontrol ...