Av

A.C. van Eijkeren-Haagsma

13 records found

The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream ...
The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease ...
Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied fo ...
The immunization of bacteria and archaea against invading viruses via CRISPR adaptation is critically reliant on the efficient capture, accurate processing, and integration of CRISPR spacers into the host genome. The adaptation proteins Cas1 and Cas2 are sufficient for successful ...
The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RN ...
Type III CRISPR-Cas immunity is widespread in prokaryotes and is generally mediated by multisubunit effector complexes. These complexes recognize complementary viral transcripts and can activate ancillary immune proteins. Here, we describe a type III-E effector from Candidatus “S ...
Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1–Cas2 integrase complex2–4. A substantial fraction of CRISPR–Cas systems use a Fe–S ...
The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologist ...
RNA interference (RNAi) is an indispensable mechanism for antiviral defense in insects, including mosquitoes that transmit human diseases. To escape this antiviral defense system, viruses encode suppressors of RNAi that prevent elimination of viral RNAs, and thus ensure efficient ...
CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various cla ...
The RNA-binding protein TRBP is a central component of the Dicer complex. Despite a decade of biochemical and structural studies, the essential functionality of TRBP in microRNA (miRNA) biogenesis remains unknown. Here we show that TRBP is an integral cofactor for time-efficient ...
The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining funct ...