C. Meijneke
12 records found
1
One important aspect of gait stability is the control of whole-body centroidal angular momentum H. We recently showed that if sensory-motor impairments affect a person's balance control, control of H can be assisted by control moment gyroscopes (CMGs). However, the effect of CMG
...
Symbitron Exoskeleton
Design, control, and evaluation of a modular exoskeleton for incomplete and complete spinal cord injured individuals
In this paper, we present the design, control, and preliminary evaluation of the Symbitron exoskeleton, a lower limb modular exoskeleton developed for people with a spinal cord injury. The mechanical and electrical configuration and the controller can be personalized to accommoda
...
Sensory-motor impairments due to age or neurological diseases can influence a person's ability to maintain balance, and increase the risk of falls. Recently, wearable Control Moment Gyroscopes (CMGs) have proven to provide effective balance support. Here, we show a new design of
...
This work was devoted to preliminary test the Achilles ankle exoskeleton and its NeuroMuscular Controller (NMC) with a test pilot affected by incomplete spinal cord injury. The customization of the robot controller, i.e. a subject-specific tailoring of the assistance level, was p
...
Symbitron
Symbiotic man-machine interactions in wearable exoskeletons to enhance mobility for paraplegics
The main goal of the Symbitron project was to develop a safe, bio-inspired, personalized wearable exoskeleton that enables SCI patients to walk without additional assistance, by complementing their remaining motor function. Here we give an overview of major achievements of the pr
...
This paper evaluates the Achilles exoskeleton. The exoskeleton is intended to provide push-off assistance for healthy subjects during walking. The assistance is provided by a series elastic actuator that has been optimized to provide maximal push-off power. The paper presents the
...