Circular Image

37 records found

PointCG

Self-supervised Point Cloud Learning via Joint Completion and Generation

The core of self-supervised point cloud learning lies in setting up appropriate pretext tasks, to construct a pre-training framework that enables the encoder to perceive 3D objects effectively. In this paper, we integrate two prevalent methods, masked point modeling (MPM) and 3D- ...

PointeNet

A lightweight framework for effective and efficient point cloud analysis

The conventional wisdom in point cloud analysis predominantly explores 3D geometries. It is often achieved through the introduction of intricate learnable geometric extractors in the encoder or by deepening networks with repeated blocks. However, these methods contain a significa ...
Accurate lane maps with semantics are crucial for various applications, such as high-definition maps (HD Maps), intelligent transportation systems (ITS), and digital twins. Manual annotation of lanes is labor-intensive and costly, prompting researchers to explore automatic lane e ...
Multi-sensor object detection is an active research topic in automated driving, but the robustness of such detection models against missing sensor input (modality missing), e.g., due to a sudden sensor failure, is a critical problem which remains under-studied. In this work, we p ...
3D modeling of indoor spaces is a prerequisite for daylight simulation, and the accuracy of the 3D models has a significant impact on the simulation. The goal of this study was to quantify the errors caused by modeling indoor spaces at different accuracy levels to find the optima ...

PolyGNN

Polyhedron-based graph neural network for 3D building reconstruction from point clouds

We present PolyGNN, a polyhedron-based graph neural network for 3D building reconstruction from point clouds. PolyGNN learns to assemble primitives obtained by polyhedral decomposition via graph node classification, achieving a watertight and compact reconstruction. To effectivel ...

PathNet

Path-Selective Point Cloud Denoising

Current point cloud denoising (PCD) models optimize single networks, trying to make their parameters adaptive to each point in a large pool of point clouds. Such a denoising network paradigm neglects that different points are often corrupted by different levels of noise and they ...
We propose a concept of hybrid geometry sets for registering cross-source geometric data. Specifically, our method focuses on the coarse registration of geometric data obtained from laser scanning and photogrammetric reconstruction. Due to different characteristics (e.g., variati ...
Optimizing the built environment via simulations of building models hinges on standardizing data acquisition. In this research, we put forward distinct levels of detail for geometry and material inputs, specifically tailored for indoor daylight applications. We primarily focus on ...

MuVieCAST

Multi-View Consistent Artistic Style Transfer

We introduce MuVieCAST, a modular multi-view consistent style transfer network architecture that enables consistent style transfer between multiple viewpoints of the same scene. This network architecture supports both sparse and dense views, making it versatile enough to handle a ...

SimLOG

Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds

The acquisition of both local and global features from irregular point clouds is crucial for 3D object detection (3DOD). Current mainstream 3D detectors neglect significant local features during pooling operations or disregard many global features of the overall scene context. Th ...
We propose an enhancement module called depth discontinuity learning (DDL) for learning-based multi-view stereo (MVS) methods. Traditional methods are known for their accuracy but struggle with completeness. While recent learning-based methods have improved completeness at the co ...

GlobalMatch

Registration of forest terrestrial point clouds by global matching of relative stem positions

Registering point clouds of forest environments is an essential prerequisite for LiDAR applications in precision forestry. State-of-the-art methods for forest point cloud registration require the extraction of individual tree attributes, and they have an efficiency bottleneck whe ...

PSSNet

Planarity-sensible Semantic Segmentation of large-scale urban meshes

We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planar ...

CSDN

Cross-Modal Shape-Transfer Dual-Refinement Network for Point Cloud Completion

How will you repair a physical object with some missings? You may imagine its original shape from previously captured images, recover its overall (global) but coarse shape first, and then refine its local details. We are motivated to imitate the physical repair procedure to addre ...
Visual place recognition (VPR) is an image-based localization method that estimates the camera location of a query image by retrieving the most similar reference image from a map of geo-tagged reference images. In this work, we look into two fundamental bottlenecks for its locali ...
Continuous implicit representations can flexibly describe complex 3D geometry and offer excellent potential for 3D point cloud analysis. However, it remains challenging for existing point-based deep learning architectures to leverage the implicit representations due to the discre ...
Symmetry widely exists in nature and man-made shapes, but it is unavoidably distorted during the process of growth, design, digitalization, and reconstruction steps. To enhance symmetry, traditional methods follow the detect-then-symmetrize paradigm, which is sensitive to noise i ...
Complexity of forest structure is an important factor contributing to uncertainty in aboveground biomass estimates. In this study, we present a new method for reducing uncertainty in forest aboveground biomass (AGB) estimation based on plot-level terrestrial laser scanner (TLS) p ...
This paper presents a method for multiple object tracking (MOT) in video streams. The method incorporates the prediction of physical locations of people into a tracking-by-detection paradigm. We predict the trajectories of people on an estimated ground plane and apply a learning- ...