GB

7 records found

All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to de ...
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and e ...
Growth and division are central to cell size. Bacteria achieve size homeostasis by dividing when growth has added a constant size since birth, termed the adder principle, by unknown mechanisms.1,2 Growth is well known to be regulated by guanosine ...
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign orga ...
Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis path ...
Carbapenems, a family of β-lactam antibiotics, are among the most powerful bactericidal compounds in clinical use. However, as rational engineering of native carbapenem-producing microbes is not currently possible, the present carbapenem supply relies upon total chemical synthesi ...
The production of fatty acids from simple nutrients occurs via a complex biosynthetic pathway with dozens of intermediate compounds and multiple branch points. Despite its importance for microbial physiology and biotechnology, critical aspects of fatty acid biosynthesis, especial ...