CL
C.H. Lashley
11 records found
1
Using salt marshes for coastal protection
Effective but hard to get where needed most
Salt marshes fronting coastal structures, such as seawalls and dikes, may offer important ecosystem-based coastal defence by reducing the wave loading and run-up levels during storms. We question (i) how the long-term salt marsh development in the Dutch Wadden Sea relates to the
...
Many coastlines around the world are protected by dikes with shallow foreshores (e.g. salt marshes and mudflats) that attenuate storm waves and are expected to reduce the likelihood and volume of waves overtopping the dikes behind them. However, most of the studies to date that a
...
Project Summary B2 - Wave propagation over foreshores
The influence of infragravity waves on overtopping at coastal structures with shallow foreshores
The state-of-The-Art formulas for mean wave overtopping (q) assessment typically require wave conditions at the toe of the structure as input. However, for structures built either on land or in very shallow water, obtaining accurate estimates of wave height and period at the stru
...
Coastal communities across the globe are often protected by structures, such as seawalls, levees or dikes, which allow only a safe volume of water to pass over or “overtop” them due to wave action during storms. The area seaward of these structures is often characterised by shall
...
Practitioners often employ diverse, though not always thoroughly validated, numerical models to directly or indirectly estimate wave overtopping (q) at sloping structures. These models, broadly classified as either phase-resolving or phase-averaged, each have strengths and limita
...
Despite the widely recognized role of infragravity (IG) waves in many often-hazardous nearshore processes, spectral wave models, which exclude IG-wave dynamics, are often used in the design and assessment of coastal dikes. Consequently, the safety of these structures in environme
...
While the significance of infragravity waves (IG) in many—often-hazardous—nearshore processes is widely-recognized, many of the empirical and numerical models used in dike safety assessments do not (directly) consider their contribution. Here, we combine physical and numerical mo
...
Wave run-up and dune overwash are typically assessed using empirical models developed for a specific range of often-simplistic conditions. Field experiments are essential in extending these formulae; yet obtaining comprehensive field data under extreme conditions is often challen
...
The accurate prediction of extreme wave run-up is important for effective coastal engineering design and coastal hazard management. While run-up processes on open sandy coasts have been reasonably well-studied, very few studies have focused on understanding and predicting wave ru
...
Assessing the accuracy of nearshore numerical models—such as SWAN—is important to ensure their effectiveness in representing physical processes and predicting flood hazards. In particular, for application to coastal wetlands, it is important that the model accurately represents w
...