WC

Weiwei Chang

7 records found

This study investigates the microbiologically influenced corrosion (MIC) of X80 steel accelerated by the phototrophic bacterium Rhodopseudomonas palustris TIE-1. The photorespiration plays a key role in promoting extracellular electron transfer (EET)-induced MIC. In the early cor ...
Microbiologically influenced corrosion (MIC) refers to the deterioration of metal surfaces as a result of the formation of microbial biofilms and metabolic activities at the biofilm/metal interface. Conventional macroscopic electrochemical techniques provide limited spatial resol ...
The microbiologically influenced corrosion of pure iron was investigated in the presence of Shewanella oneidensis MR-1 with various levels of exogenous riboflavin (RF) serving as electron shuttles for extracellular electron transfer (EET). With more RF available, a larger and den ...
The influence of outward extracellular electron transfer (EET) of Pseudomonas aeruginosa in accelerating corrosion of 304 stainless steel was investigated. With less NO3 available as electron acceptor, P. aeruginosa biofilm accelerated the pitting corrosion ...
Microbiologically influenced corrosion of metals is prevalent in both natural and industrial environments, causing enormous structural damage and economic loss. Exactly how microbes influence corrosion remains controversial. Here, we show that the pitting corrosion of stainless s ...