Due to the wide range of complex processes in the active coastal zone, individual studies have tended to focus on specific time scales (e.g., event-scale erosion) and/or specific morphological units, (e.g., the nearshore bar zone). As a result, the wet and dry portions of the bea
...
Due to the wide range of complex processes in the active coastal zone, individual studies have tended to focus on specific time scales (e.g., event-scale erosion) and/or specific morphological units, (e.g., the nearshore bar zone). As a result, the wet and dry portions of the beach have typically been studied independently. In nature, however, the nearshore and the backshore are highly interdependent and understanding the linkages between these units is critical to characterizing coastal evolution. For example, during periods of intense storm conditions (e.g., major El Niños on the U.S. West Coast), elevated water levels and large waves commonly lead to the scarping, or even destruction, of wind formed dunes. Given that dunes act as a form of green infrastructure and are a major asset to the coastal zone, it is critical to be able to forecast backshore evolution. Existing models for backshore recovery, however, are typically based on local historical trends rather than a mechanistic understanding including onshore sediment transport, dune growth, and the role of ecomorphodynamic feedbacks. Therefore, most likely as a result of the historical academic separation of wave and wind driven processes, geomorphology and ecology, and short- and long-term processes, our understanding of beach and dune building is still in its infancy. Here we describe SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment, a comprehensive summer 2016 field campaign in which measurements of waves, currents, wind, dune ecology, subaqueous and aeolian sediment transport, and subsequent morphological changes were collected along the Long Beach Peninsula, WA. The data collected during the six-week experiment are contextualized by nearly two decades of focused research on the seasonal-centennial scale evolution of this rapidly prograding system. The findings of this study, actively bridging across disciplines, morphometric units, and temporal scales are informing conceptual and numerical models of beach-dune interaction and helping to improve management of vital backshore resources.@en