Investigation of the moisture damage and the erosion depth on asphalt
More Info
expand_more
Abstract
Moisture erosion is one of the key factors leading to asphalt pavement damage, and the erosion depth indicates the moisture damage level but it is usually neglected. In order to study the moisture erosion and the erosion depth, this study characterized the chemical structure, rheological property and adhesion property of asphalt at different depths after immersion for different periods. To further explore the diffusion mechanism of eroded asphalt, a Log-log numerical model was established based on the Fick's second law to calculate the diffusion coefficient throughout the depth. The results indicate that it takes just four hours for water to penetrate a 25 μm asphalt film. The relation between erosion depth and immersion period presents three stages, and the process can be fitted with a polynomial model. At the macroscopic level, there is a lag between the changes in adhesion property with chemical structure and rheological property. Additionally, the periodicity of moisture erosion process was verified by the calculation of diffusion factor. In summary, the diffusion mechanism of eroded asphalt by moisture can provide a theoretical basis for the development of laboratory moisture erosion test specification, thus avoiding the waste of raw materials.