Cost-effective Seismic Reflection Imaging Using Seismic Interferometry for Imaging of Enhanced Geothermal System
A Case Study in the Neuquén Basin
More Info
expand_more
Abstract
We investigate the applicability of passive seismic interferometry using P-wave coda from local earthquakes for the purpose of retrieving reflections for imaging enhanced geothermal systems. For this, we use ambient-noise data recorded in the Neuquén basin, Argentina, where the Peteroa and Los Molles geothermal fields are present nearby. After retrieving reflections, we proceed to process them following a standard processing sequence to obtain images of the crustal structures. Examining crosscorrelation, crosscoherence, and multidimensional deconvolution approaches, we find that multidimensional deconvolution, based on the truncated singular-value decomposition scheme, gives us slightly better structural imaging than the other two approaches. Our results provide higher-resolution imaging of the crustal structures down to the lower boundary of the Moho in comparison with previous passive seismic imaging by receiver function and global-phase seismic interferometry in this region. We also interpret the deep basement thrust fault that has been indicated by active-seismic reflection profile and nearby exploration well. The method we propose could be used as a low-cost alternative to active-source acquisition for imaging and monitoring purposes of deeper geothermal reservoirs, e.g., in enhanced geothermal systems, where the target structures are down to 10 km depth.
Files
Download not available