YN

25 records found

In recent years, the rapid changes in social trends and technologies, such as digital transformation and energy transition, have had a large impact on many industries. Future forecasts and exploration of potential values become indispensable for dealing with such changes and achi ...
The characterization of the megaregolith on the Moon has been investigated in various ways including analysis of lunar meteorites, remote sensing of mineralogy and gravity, and deriving a seismic velocity profile. In this study, we propose a method for analyzing azimuthal anisotr ...
No conclusive evidence has been presented to date for tectonic tremor (TT) in the vicinity of central Chile, where the Nazca Plate is subducting beneath the South American Plate. Subduction in our experimental location (roughly 35.5° S, 70.5° W) is steep and fairly unobstructed c ...
We present a method for automatic detection and classification of seismic events from continuous ambient-noise (AN) recordings using an unsupervised machine-learning (ML) approach. We combine classic and recently developed array-processing techniques with ML enabling the use of u ...
The main issues related to passive-source reflection imaging with seismic interferometry (SI) are inadequate acquisition parameters for sufficient spatial wavefield sampling and vulnerability of surface arrays to the dominant influence of the omnipresent surface-wave sources. Add ...
Machine learning methods including support-vector-machine and deep learning are applied to facies classification problems using elastic impedances acquired from a Paleocene oil discovery in the UK Central North Sea. Both of the supervised learning approaches showed similar accura ...
Semi-supervised deep-learning architectures provide a multi-layer, pattern recognition, approach that is powerful and ideally suited to the data rich environment that exists at the heart of the oil and gas industry. In this study we apply this technology in order to classify faci ...
This thesis investigates the potential of passive seismic methods that make use of body waves, and especially the passive reflection method, as cost-effective applications for multiscale subsurface imaging and characterization. For this purpose, we develop several seismic techniq ...
The reflection seismic method is the most frequently used exploration method for imaging and monitoring subsurface structures with high resolution. It has proven its qualities from the scale of regional seismology to the scale of near-surface applications that look just a few met ...
We have developed an application of passive seismic interferometry (SI) using P-wave coda of local earthquakes for the purpose of crustal-scale reflection imaging. We processed the reflection gathers retrieved from SI following a standard seismic processing in exploration seismol ...
Obtaining detailed images of aseismic parts of subducting slabs remains a large challenge for understanding slab dynamics. Hypocenter mapping cannot be used for the purpose due to the absence of seismicity, whereas the use of receiver functions might be compromised by the presenc ...
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-of ...
Several seismic investigations - using receiver-function methods as well as tomographic approaches - have been carried out in the Malargüe region (Argentina) for various purposes over a few decades. We use a body-wave seismic interferometry (SI) approach to retrieve reflections l ...
In 30 years following NASA’s Apollo missions, numerous geophysical methods have been applied to determine the depth of the Lunar Moho. These methods, such as travel-time analysis and gravity inversion, have yielded inconsistent estimates. Here, we apply a seismic interferometry t ...
We investigate the applicability of passive seismic interferometry using P-wave coda from local earthquakes for the purpose of retrieving reflections for imaging enhanced geothermal systems. For this, we use ambient-noise data recorded in the Neuquén basin, Argentina, where the P ...
We investigated the applicability of global phases (epicentral distances of ≥ 120° and ≥ 150°) for the H/V spectral ratio to identify the fundamental resonance frequency. We applied the method to delineate a part of Neuquén basin in Argentina without the need for active seismic s ...