A Thin-film Reconfigurable SiC Thermal Test Chip for Reliability Monitoring in Harsh Environments

More Info
expand_more

Abstract

Wide bandgap (WBG) semiconductor technologies enable significant progress in the emergence of power modules. Power cycling at elevated temperatures causes crack or delamination failure, especially at the die-attached bonded interface in the long term. Therefore, the in-situ reliability investigation of power modules, materials, and semiconductor packages is of great significance for modern industries. The silicon carbide's higher bandgap energy, intrinsic thermal conductivity, and mechanical strength make it a great candidate for the next generation of semiconductor, designed to operate in harsh conditions. In this study, a thin-film reconfigurable silicon carbide (SiC) thermal test chip (TTC) is designed and fabricated for reliability assessment in harsh environments. The proposed TTC realizes in-situ power/thermal cycling tests at elevated temperatures as well as characterization of novel materials such as nanoparticle-based sintering materials in die-attach technology and high-temperature-compatible epoxy molding compounds. The chip is equipped with thin-film platinum microheaters to realize modular power mappings, and platinum resistive temperature detectors (RTD) to examine the thermal reliability by monitoring the precise changes of the internal junction-to-case thermal resistance.

Files

A_Thin_film_Reconfigurable_SiC... (pdf)
(pdf | 2.64 Mb)
- Embargo expired in 03-02-2024