Optimal fault ride through compliance of offshore wind power plants with VSC-HVDC connection by meta-heuristic based tuning

More Info
expand_more

Abstract

This paper presents a novel iterative procedure augmented by electromagnetic transient type simulations and the state of the art mean variance mapping optimization algorithm. The aforementioned procedure enables the optimal tuning of coordinated fault ride through compliance strategies for offshore wind power plants with VSC-HVDC transmission. In particular, the formulated optimization task minimizes the electrical stresses experienced by the VSC-HVDC system and the offshore wind power plants during onshore faults. Moreover, it ensures that the onshore and offshore grid code profiles are not violated due to unwanted dynamics associated with the combined response of the VSC-HVDC system and the wind power plants. Two state of the art coordinated fault ride through strategies are optimized, namely the voltage drop and the frequency modulation technique. Simulation results demonstrate that the optimal tuning of coordinated fault ride through compliance strategies by the proposed iterative procedure enables improved dynamic response and reduced electrical stresses for the offshore wind power plant and the VSC-HVDC transmission.

Files

9912492_u.pdf
(pdf | 3.64 Mb)
Unknown license

Download not available