Assessing the Validity and Limitations of Dual-porosity Models Using Geological Well Testing for Fractured Formations

More Info
expand_more

Abstract

Geological well testing is a valuable tool that allows us to improve understanding of pressure transient behaviour in a fractured reservoir. However, not all wells in a fractured reservoir will show pressure transients that are expected for NFRs. Our findings demonstrate that high resolution models with proper grid refinement around the wells and fractures are required to model pressure transient behaviour adequately and produce a physically meaningful wellbore response for a fractured reservoir. The key concept for interpreting well test data from fractured reservoirs is the dual-porosity model. This model, originally developed by Warren and Root (1963) has been the industry standard for modelling NFRs and interpreting well-test data from NFRs for more than 50 years. Although there are a number of factors impacting the exact shape of the pressure transients, our results suggest that observing the classical “V-shape” in the pressure derivative, as expected from a dual-porosity model may be an exception, rather than a rule in NFR, even for well-connected fracture networks. Our work quantifies when and why the assumptions inherent to the dual-porosity model break down when interpreting well-test data from NFR.

Files

Th_P7_11.pdf
(pdf | 1.48 Mb)

Download not available