Metamodel-based metaheuristics in optimal responsive adaptation and recovery of traffic networks

More Info
expand_more

Abstract

Different emerging threats highlighted the relevance of recovery and adaptation modelling in the functioning of societal systems. However, as modelling of systems becomes more complex, its effort increases challenging the practicality of the engineering analyses required for efficient recovery and adaptation. In the present work, metamodels are researched as a tool to enable these analyses in traffic networks. One of the main advantages of metamodeling is their synergy with the short decision times required in recovery and adaptation. A sequential global metamodeling technique is proposed and applied to three macroscopic day-to-day user-equilibrium models. Two reference contexts of application are researched: optimal recovery to a perturbation (with response times reduced by 98% with loss of accuracy lower than 1%) and adaptation under uncertainty with perturbation-dependent optimality. Results show that metamodeling-based metaheuristics enable fast resource-intensive engineering analyses of traffic recovery and adaptation, which may change the paradigm of decision-making in this field.