The Analysis and the Performance of the Parallel-Partial Reset Control System

More Info
expand_more

Abstract

Reset controllers have demonstrated their effectiveness in enhancing performance in precision motion systems. To further exploiting the potential of reset controllers, this study introduces a parallel-partial reset control structure. Frequency response analysis is effective for the design and fine-tuning of controllers in industries. However, conducting frequency response analysis for reset control systems poses challenges due to their nonlinearities. We develop frequency response analysis methods for both the open-loop and closed-loop parallel-partial reset systems. Simulation results validate the accuracy of the analysis methods, showcasing precision enhancements exceeding 100% compared to the traditional describing function method. Furthermore, we design a parallel-partial reset controller within the Proportional-Integral-Derivative (PID) control structure for a mass-spring-damper system. The frequency response analysis of the designed system indicates that, while maintaining the same bandwidth and phase margin of the first-order harmonics, the new system exhibits lower magnitudes of higher-order harmonics, compared to the traditional reset system. Moreover, simulation results demonstrate that the new system achieves lower overshoot and quicker settling time compared to both the traditional reset and linear systems.

Files

The_Analysis_and_the_Performan... (pdf)
(pdf | 3.95 Mb)
Unknown license
warning

File under embargo until 24-01-2025