YK
Y. Kato
3 records found
1
With an expectation of 8.3 trillion photos stored in 2021 [1], convolutional neural networks (CNN) are beginning to be preeminent in the field of image recognition. However, with this deep neural network (DNN) still being seen as a black box, it is hard to fully employ its capabi
...
Does a convolutional neural network (CNN) always have to be deep to learn a task? This is an important question as deeper networks are generally harder to train. We trained shallow and deep CNNs and evaluated their performance on simple regression tasks, such as computing the mea
...
This research provides an overview on how training Convolutional Neural Networks (CNNs) on imbalanced datasets affect the performance of the CNNs. Datasets could be imbalanced as a result of several reasons. There are for example naturally less samples of rare diseases. Since the
...