LoRa (Long Range) is a low-power, long-range and low-cost wireless communication system that can facilitate a wide variety of infrastructures for the Internet of Things (IoT). Current algorithms to locate LoRa tags have a resolution of 100 m in practice, and a question is if tha
...
LoRa (Long Range) is a low-power, long-range and low-cost wireless communication system that can facilitate a wide variety of infrastructures for the Internet of Things (IoT). Current algorithms to locate LoRa tags have a resolution of 100 m in practice, and a question is if that can be improved without changing the tags or adding too much to the gateways (basestations). Conventional delay estimation ranging algorithms extract useful information from the channel frequency response and use this information to estimate delays. In this thesis, three localization techniques are presented: the matched filter, FBCM-MUSIC and TLS-ESPRIT algorithms. Then a multiband architecture is proposed and integrated into the matched filter. These algorithms are implemented in the LoRa system model. The simulations indicate that FBCM-MUSIC and TLS-ESPRIT have better performance than the matched filter in NLOS channels. The results also show that TLS-ESPRIT is more effective and robust compared to MUSIC. The proposed multiband architecture can improve the resolution of TOA estimation and decreases the 90th percentile error by around 40%.