The development of low-emission aero-engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor f
...
The development of low-emission aero-engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor flows. In this paper, predictions of a swirl stabilized model combustor are compared to experimental data. The computational method is based on an Eulerian two-phase model in conjunction with an eddy dissipation (ED) and a presumed-shape-PDF (JPDF) combustion model. The combination of an Eulerian two-phase model with a JPDF combustion model is a novelty. It was found to give good agreement to the experimental data.@en