LG
L.A. Grzelak
29 records found
1
Generative adversarial networks (GANs) have shown promising results when applied on partial differential equations and financial time series generation. We investigate if GANs can also be used to approximate one-dimensional Ito ^ stochastic differential equations (SDEs). We propo
...
We propose an accurate data-driven numerical scheme to solve stochastic differential equations (SDEs), by taking large time steps. The SDE discretization is built up by means of the polynomial chaos expansion method, on the basis of accurately determined stochastic collocation (S
...
This study contributes to understanding Valuation Adjustments (xVA) by focussing on the dynamic hedging of Credit Valuation Adjustment (CVA), corresponding Profit & Loss (P&L) and the P&L explain. This is done in a Monte Carlo simulation setting, based on a theoretica
...
Collocating Volatility
A Competitive Alternative to Stochastic Local Volatility Models
We discuss a competitive alternative to stochastic local volatility models, namely the Collocating Volatility (CV) framework, introduced in [L. A. Grzelak (2019) The CLV framework-A fresh look at efficient pricing with smile, International Journal of Computer Mathematics 96 (11),
...
A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning fr
...
It is a market practice to price exotic derivatives, like callable basket options, with the local volatility model [B. Dupire, Pricing with a smile, Risk 7 (1994), pp. 18–20; E. Derman and I. Kani, Stochastic implied trees: Arbitrage pricing with stochastic term and strike struct
...
In this paper, we study the impact of the parameters involved in Heston model by means of Uncertainty Quantification. The Stochastic Collocation Method already used for example in computational fluid dynamics, has been applied throughout this work in order to compute the propagat
...
The stochastic collocation Monte Carlo sampler
Highly efficient sampling from ‘expensive’ distributions
In this article, we propose an efficient approach for inverting computationally expensive cumulative distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler (SCMC sampler), within a polynomial chaos expansion framework, allows us the ge
...
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al.
...
On a one time-step Monte Carlo simulation approach of the SABR model
Application to European options
In this work, we propose a one time-step Monte Carlo method for the SABR model. We base our approach on an accurate approximation of the cumulative distribution function of the time-integrated variance (conditional on the SABR volatility), using Fourier techniques and a copula. R
...
In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al.
...