In this article, we propose an efficient approach for inverting computationally expensive cumulative distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler (SCMC sampler), within a polynomial chaos expansion framework, allows us the ge
...
In this article, we propose an efficient approach for inverting computationally expensive cumulative distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler (SCMC sampler), within a polynomial chaos expansion framework, allows us the generation of any number of Monte Carlo samples based on only a few inversions of the original distribution plus independent samples from a standard normal variable. We will show that with this path-independent collocation approach the exact simulation of the Heston stochastic volatility model, as proposed in Broadie and Kaya [Oper. Res., 2006, 54, 217–231], can be performed efficiently and accurately. We also show how to efficiently generate samples from the squared Bessel process and perform the exact simulation of the SABR model.
@en