The collapse dynamics and runout of columns of elongated grains in two dimensions are numerically investigated in dry and immersed conditions, by means of an unresolved finite elements/discrete elements model. The elongated grains are modeled as rigid aggregates of disks. The col
...
The collapse dynamics and runout of columns of elongated grains in two dimensions are numerically investigated in dry and immersed conditions, by means of an unresolved finite elements/discrete elements model. The elongated grains are modeled as rigid aggregates of disks. The column aspect ratio is systematically varied from 0.125 to 16 in order to span short and tall columns. To analyze the effect of the initial grain orientation, columns with an initial grain orientation that is either random or aligned with a given direction are both considered. Collapse dynamics, both in dry and immersed cases, are found analogous to that previously observed for circular grain columns, particularly with respect to the power law dependency for the runout as a function of the column aspect ratio. The effect of the fluid mainly results in a decrease of the runout distance. Interestingly, the collapse dynamics and runout are not significantly affected by the initial orientation of the grains, except maybe in the extreme case where the grains are all horizontally oriented, which geometrically prevents the collapse. Finally, a scaling based on the front propagation energy is proposed allowing one to unify the runout of short to tall and dry to immersed columns in a single description, regardless of the initial grain orientation.@en