GL

G. Li

7 records found

Living systems can respond to their environment through signal transduction cascades. In these cascades, original stimuli are amplified and translated into reaction or assembly events. In an effort to instill synthetic materials with biomimetic responsivity, we report an aggregat ...
In the quest for stimuli-responsive materials with specific, controllable functions, coacervate hydrogels have become a promising candidate, featuring sensitive responsiveness to environmental signals enabling control over sol-gel transitions. However, conventional coacervation-b ...
The field of supramolecular chemistry is rapidly progressing, transitioning from the creation of thermodynamically stable systems found in local or global minima on the free energy landscape to the development of out-of-equilibrium systems that rely on chemical reactions to estab ...
Signal transduction mechanisms are key to living systems. Cells respond to signals by changing catalytic activity of enzymes. This signal responsive catalysis is crucial in the regulation of (bio)chemical reaction networks (CRNs). Inspired by these networks, we report an artifici ...
Nature has proven to be a great source of inspiration for scientific research and technological innovation in various areas: food, medicine, architecture, chemistry, materials, algorithms, and many other fields. At the basis of sophisticated functions associated with life in natu ...
Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular en ...
Fuel-driven chemical reaction networks provide an opportunity to develop chemical systems that operate out-ofequilibrium. There remains a need to design and develop new fueldriven chemical reaction networks capable of repeated operation using simple and benign chemistry. Here, we ...