BF

B. Fan

8 records found

Living systems can respond to their environment through signal transduction cascades. In these cascades, original stimuli are amplified and translated into reaction or assembly events. In an effort to instill synthetic materials with biomimetic responsivity, we report an aggregat ...
Dextran-based hydrogels are promising therapeutic materials for drug delivery, tissue regeneration devices, and cell therapy vectors, due to their high biocompatibility, along with their ability to protect and release active therapeutic agents. This report describes the synthesis ...
In the quest for stimuli-responsive materials with specific, controllable functions, coacervate hydrogels have become a promising candidate, featuring sensitive responsiveness to environmental signals enabling control over sol-gel transitions. However, conventional coacervation-b ...
This thesis describes the experimental development of new dynamic hydrogels based on reversible thiol conjugate additions. Redox-controlled hydrogels and self-healing injectable hydrogels have been achieved by introducing reversible thiol conjugate additions to crosslink polymers ...
Introduction of dynamic thiol-alkynone double addition cross-links in a polymer network enable the formation of a self-healing injectable polymer hydrogel. A four-arm polyethylene glycol (PEG) tetra-thiol star polymer is cross-linked by a small molecule alkynone via the thiol-alk ...
Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, ...
Fuel-driven chemical reaction networks provide an opportunity to develop chemical systems that operate out-ofequilibrium. There remains a need to design and develop new fueldriven chemical reaction networks capable of repeated operation using simple and benign chemistry. Here, we ...
Hydrazone formation reactions from aldehydes and hydrazides have the remarkable qualities that they proceed in water and the kinetics can be controlled by organocatalysis. For these reasons, this class of reactions finds widespread use in biological as well as material settings. ...