A. Katsifodimos
66 records found
1
While the concept of large-scale stream processing is very popular nowadays, efficient dynamic allocation of resources is still an open issue in the area. The database research community has yet to evaluate different autoscaling techniques for stream processing engines under a ro
...
Although the cloud has reached a state of robustness, the burden of using its resources falls on the shoulders of programmers who struggle to keep up with ever-growing cloud infrastructure services and abstractions. As a result, state management, scaling, operation, and failure m
...
Stream processing in the last decade has seen broad adoption in both commercial and research settings. One key element for this success is the ability of modern stream processors to handle failures while ensuring exactly-once processing guarantees. At the moment of writing, virtu
...
Multiple works in data management research focus on automating the processes of data augmentation and feature discovery to save users from having to perform these tasks manually. Yet, this automation often leads to a disconnect with the users, as it fails to consider the specific
...
How can we perform similarity joins of multi-dimensional streams in a distributed fashion, achieving low latency? Can we adaptively repartition those streams in order to retain high performance under concept drifts? Current approaches to similarity joins are either restricted to
...
Given a set of pre-trained Machine Learning (ML) models, can we solve complex analytic tasks that make use of those models by formulating ML inference queries? Can we mitigate different tradeoffs, e.g., high accuracy, low execution costs and memory footprint, when optimizing the
...
Amalur
Data Integration Meets Machine Learning
Machine learning (ML) training data is often scattered across disparate collections of datasets, called data silos. This fragmentation poses a major challenge for data-intensive ML applications: integrating and transforming data residing in different sources demand a lot of manua
...
Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. This survey provides a comprehensive overview of fundamen
...
Sequential recommendation problems have received increasing attention in research during the past few years, leading to the inception of a large variety of algorithmic approaches. In this work, we explore how large language models (LLMs), which are nowadays introducing disruptive
...
Recent advances in Graphic Processing Units (GPUs) have facilitated a significant performance boost for database operators, in particular, joins. It has been intensively studied how conventional join implementations, such as hash joins, benefit from the massive parallelism of GPU
...
The rapid growth of large-scale machine learning (ML) models has led numerous commercial companies to utilize ML models for generating predictive results to help business decision-making. As two primary components in traditional predictive pipelines, data processing, and model pr
...
The increasing need for data trading across businesses nowadays has created a demand for data marketplaces. However, despite the intentions of both data providers and consumers, today’s data marketplaces remain mere data catalogs. We believe that marketplaces of the future requir
...
In this work, we evaluate autoscaling solutions for stream processing engines. Although autoscaling has become a mainstream subject of research in the last decade, the database research community has yet to evaluate different autoscaling techniques under a proper benchmarking set
...
Machine learning (ML) practitioners and organizations are building model repositories of pre-trained models, referred to as model zoos. These model zoos contain metadata describing the properties of the ML models and datasets. The metadata serves crucial roles for reporting, audi
...
The proliferation of pre-trained ML models in public Web-based model zoos facilitates the engineering of ML pipelines to address complex inference queries over datasets and streams of unstructured content. Constructing optimal plan for a query is hard, especially when constraints
...
While there are multiple approaches for distributed application programming (e.g., Bloom [2], Hilda [14], Cloudburst [12], AWS Lambda, Azure Durable Functions, and Orleans [3, 4]), in practice developers mainly use libraries of popular general purpose languages such as Spring Boo
...
Given a data lake of tabular data as well as a query table, how can we retrieve all the tables in the data lake that can be unioned with the query table? Table union search constitutes an essential task in data discovery and preparation as it enables data scientists to navigate m
...
Machine learning (ML) researchers and practitioners are building repositories of pre-trained models, called model zoos. These model zoos contain metadata that detail various properties of the ML models and datasets, which are useful for reporting, auditing, reproducibility, and i
...
The increasing need for data trading has created a high demand for data marketplaces. These marketplaces require a set of valueadded services, such as advanced search and discovery, that have been proposed in the database research community for years, but are yet to be put to pra
...
Machine Learning (ML) applications require high-quality datasets. Automated data augmentation techniques can help increase the richness of training data, thus increasing the ML model accuracy. Existing solutions focus on efficiency and ML model accuracy but do not exploit the ric
...