GL
G.J.T. Leus
487 records found
1
...
Topological signal processing and learning
Recent advances and future challenges
Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure via nodes and edges capturing their interactions, leading to t
...
In this work, we deal with the problem of reconstructing a complete bandlimited graph signal from partially sampled noisy measurements. For a known graph structure, an efficient greedy algorithm is presented to partition the graph nodes into disjoint subsets such that sampling th
...
In this paper, we propose a new method for joint ranging and Phase Offset (PO) estimation of multiple transponder-equipped aviation vehicles (TEAVs), including Manned Aerial Vehicles (MAVs) and Unmanned Aerial Vehicles (UAVs). The proposed method employs the overlapping uncoordin
...
Identifying overlapping communities from data is crucial for grasping the complex structure and dynamics of networks, amongst others in fields such as computational neuroscience. Research using fMRI has demonstrated that brain regions can change their functional network membershi
...
Four-dimensional ultrasound imaging of complex biological systems such as the brain is technically challenging because of the spatiotemporal sampling requirements. We present computational ultrasound imaging (cUSi), an imaging method that uses complex ultrasound fields that can b
...
We consider the problem of recovering complex-valued block sparse signals with unknown borders. Such signals arise naturally in numerous applications. Several algorithms have been developed to solve the problem of unknown block partitions. In pattern-coupled sparse Bayesian learn
...
Computational ultrasound imaging (cUSi) offers high-resolution 3D imaging with simpler hardware by relying on computational power. Central to cUSi is a large model matrix that stores all pulse-echo signals. For 3D imaging this matrix easily surpasses 1 terabyte, hindering in-memo
...
The main focus of this paper is an active sensing application that involves selecting transmit and receive sensors to optimize the Cramér-Rao bound (CRB) on target parameters. Although the CRB is non-convex in the transmit and receive selection, we demonstrate that it is convex i
...
In this paper, we present a novel convolution theorem which encompasses the well known convolution theorem in (graph) signal processing as well as the one related to time-varying filters. Specifically, we show how a node-wise convolution for signals supported on a graph can be ex
...
A new method for joint ranging and Phase Offset (PO) estimation of multiple drones/aircrafts is proposed in this paper. The proposed method employs the superimposed uncoordinated Automatic Dependent Surveillance-Broadcast (ADS-B) packets broadcasted by drones/aircrafts for joint
...
We consider the scenario of finding the transfer function of an aberrating layer in front of a receiving ultrasound (US) array, assuming a separate non-aberrated transmit source. We propose a method for blindly estimating this transfer function without exact knowledge of the ultr
...
In this work, we consider the self-calibration problem of joint calibration and direction-of-Arrival (DOA) estimation using acoustic sensor arrays. Unlike many previous iterative approaches, we propose solvers that can be readily used for both linear and non-linear arrays for joi
...
Differential orthogonal signal-division multiplexing (OSDM) is attractive for underwater acoustic (UWA) communications because it can eliminate channel estimation, resulting in a substantial reduction of complexity at the receiver. However, when the channel is time-varying, it ma
...
Greedy Sensor Selection
Leveraging Submodularity Based on Volume Ratio of Information Ellipsoid
This article focuses on greedy approaches to select the most informative k sensors from N candidates to maximize the Fisher information, i.e., the determinant of the Fisher information matrix (FIM), which indicates the volume of the information ellipsoid (VIE) constructed by the
...
Sensor networks are omnipresent in our daily lives. In this chapter, we deal with the problem of organizing such a sensor network, or in other words, how to best place the different sensors. The sensing applications we consider in this chapter yield the estimation and detection o
...
It has been previously demonstrated that applying an aberrating mask for 2D compressive imaging using a low number of sensors (elements) can significantly improve image resolution, as evaluated via the point spread function. Here we investigate the potential to apply a similar ap
...
Integrated sidelobe level is a useful measure to quantify robustness of a waveform-filter pair to unknown range clutter and multiple closely located targets. Sidelobe suppression on receive will incur a loss in the signal to noise ratio after pulse compression. We derive a pulse
...
Graph-based learning and estimation are fundamental problems in various applications involving power, social, and brain networks, to name a few. While learning pair-wise interactions in network data is a well-studied problem, discovering higher-order interactions among subsets of
...
We consider the problem of recovering block-sparse signals with unknown boundaries. Such signals arise naturally in various applications. Recent literature introduced a pattern-coupled or clustered Gaussian prior, in which each coefficient involves its own hyperparameter as well
...
Sensor selection is a useful method to help reduce computational, hardware, and power requirements while maintaining acceptable performance. Although minimizing the Cramér-Rao bound has been adopted previously for sparse sensing, it did not consider multiple targets and unknown t
...