EI

85 records found

This paper addresses the problem of online network topology inference for expanding graphs from a stream of spatiotemporal signals. Online algorithms for dynamic graph learning are crucial in delay-sensitive applications or when changes in topology occur rapidly. While existing w ...

Topological signal processing and learning

Recent advances and future challenges

Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure via nodes and edges capturing their interactions, leading to t ...
Deep-learning-based surrogate models represent a powerful alternative to numerical models for speeding up flood mapping while preserving accuracy. In particular, solutions based on hydraulic-based graph neural networks (SWE-GNNs) enable transferability to domains not used for tra ...
This paper proposes a novel algorithm to retroactively compute the evolution of edge signals from a given sequence of partial observations from topological structures, a concept referred to as evolution backcasting. Our backcasting algorithm exploits the spatio-temporal dependenc ...
Filters are fundamental in extracting information from data. For time series and image data that reside on Euclidean domains, filters are the crux of many signal processing and machine learning techniques, including convolutional neural networks. Increasingly, modern data also re ...
This paper introduces a hypothesis testing problem to detect whether a noisy simplicial signal lives in some specific Hodge subspaces or not. This is of particular relevance for edge flows in a network since they exhibit, under normal circumstances, different properties in Hodge ...
The vector autoregressive (VAR) model is extensively employed for modelling dynamic processes, yet its scalability is challenged by an overwhelming growth in parameters when dealing with several hundred time series. To overcome this issue, data relations can be leveraged as induc ...
Temporal networks arise due to certain dynamics influencing their connections or due to the change in interactions between the nodes themselves, as seen for example in social networks. Such evolution can be algebraically represented by a three-way tensor, which lends itself to us ...
Graph filters are a staple tool for processing signals over graphs in a multitude of downstream tasks. However, they are commonly designed for graphs with a fixed number of nodes, despite real-world networks typically grow over time. This topological evolution is often known up t ...
The edge flow reconstruction task consists of retreiving edge flow signals from corrupted or incomplete measurements. This is typically solved by a regularized optimization problem on higher-order networks such as simplicial complexes and the corresponding regularizers are chosen ...
An online topology estimation algorithm for nonlinear structural equation models (SEM) is proposed in this paper, addressing the nonlinearity and the non-stationarity of real-world systems. The nonlinearity is modeled using kernel formulations, and the curse of dimensionality ass ...
Stochastic graph neural networks (SGNNs) are information processing architectures that learn representations from data over random graphs. SGNNs are trained with respect to the expected performance, which comes with no guarantee about deviations of particular output realizations ...
Vector autoregressive (VAR) model is widely used to model time-varying processes, but it suffers from prohibitive growth of the parameters when the number of time series exceeds a few hundreds. We propose a simplicial VAR model to mitigate the curse of dimensionality of the VAR m ...

Graph-Time Convolutional Neural Networks

Architecture and Theoretical Analysis

Devising and analysing learning models for spatiotemporal network data is of importance for tasks including forecasting, anomaly detection, and multi-agent coordination, among others. Graph Convolutional Neural Networks (GCNNs) are an established approach to learn from time-invar ...
Numerical modelling is a reliable tool for flood simulations, but accurate solutions are computationally expensive. In recent years, researchers have explored data-driven methodologies based on neural networks to overcome this limitation. However, most models are only used for a ...
Simplicial convolutional filters can process signals defined over levels of a simplicial complex such as nodes, edges, triangles, and so on with applications in e.g., flow prediction in transportation or financial networks. However, the underlying topology expands over time in a ...
Implementing accurate Distribution System State Estimation (DSSE) faces several challenges, among which the lack of observability and the high density of the distribution system. While data-driven alternatives based on Machine Learning models could be a choice, they suffer in DSS ...
Current spatiotemporal learning methods for complex data exploit the graph structure as an inductive bias to restrict the function space and improve data and computation efficiency. However, these methods work principally on graphs with a fixed size, whereas in several applicatio ...
Reconstructing missing values and removing noise from network-based multivariate time series requires developing graph-time regularizers capable of capturing their spatiotemporal behavior. However, current approaches based on joint spatiotemporal smoothness, diffusion, or variati ...