FG

Fernando Gama

4 records found

Filters are fundamental in extracting information from data. For time series and image data that reside on Euclidean domains, filters are the crux of many signal processing and machine learning techniques, including convolutional neural networks. Increasingly, modern data also re ...

EdgeNets

Edge Varying Graph Neural Networks

Driven by the outstanding performance of neural networks in the structured euclidean domain, recent years have seen a surge of interest in developing neural networks for graphs and data supported on graphs. The graph is leveraged at each layer of the neural network as a parameter ...
Graph convolutional neural networks (GCNNs) learn compositional representations from network data by nesting linear graph convolutions into nonlinearities. In this work, we approach GCNNs from a state-space perspective revealing that the graph convolutional module is a minimalist ...
Convolutional neural networks (CNNs) restrict the, otherwise arbitrary, linear operation of neural networks to be a convolution with a bank of learned filters. This makes them suitable for learning tasks based on data that exhibit the regular structure of time signals and images. ...