RH

66 records found

DNS and RANS simulations were carried out for core-annular flow in a horizontal pipe and results were compared with experiments carried out with water and oil in our lab. In contrast to most existing studies for core-annular flow available in the literature, the flow annulus is n ...
In this paper we present a complete framework for the energy-stable simulation of stratified incompressible flow in channels, using the one-dimensional two-fluid model. Building on earlier energy-conserving work on the basic two-fluid model, our new framework includes diffusion, ...
The Reynolds-Averaged Navier Stokes (RANS) with the Launder & Sharma low-Reynolds number k−ε model was used to simulate core-annular flow in the same configuration with vertical upflow as considered by Kim & Choi (2018), who carried out Direct Numerical Simulations (DNS), ...
The pressure-free two-fluid model (PFTFM) is a recent reformulation of the one-dimensional two-fluid model (TFM) for stratified incompressible flow in ducts (including pipes and channels), in which the pressure is eliminated through intricate use of the volume constraint. The dis ...
Interfacial waves in core-annular pipe flow are studied through two-phase numerical simulations. Here the water annulus is turbulent, whereas the oil core stays laminar. The low-Reynolds number Launder & Sharma k−ε model is applied. By extracting the moving wave shape from th ...
1D, 2D and 3D numerical simulations were carried out with the Reynolds-Averaged Navier-Stokes equations (RANS) for horizontal oil-water core-annular flow in which the oil core stays laminar while the water layer is turbulent. The turbulence is described with the Launder-Sharma lo ...
A novel pressure-free two-fluid model formulation is proposed for the simulation of one-dimensional incompressible multiphase flow in pipelines and channels. The model is obtained by simultaneously eliminating the volume constraint and the pressure from the widely used two-fluid ...
Core-annular flow is an efficient way of transporting viscous oil through a pipeline. A sharp increase in the pressure drop will occur when the oil waves at the water-oil interface touch the pipe wall. Depending on the oil and pipe material physical properties, the oil may adhere ...
Hydrogen is one of the most popular alternatives for energy storage. Because of its low volumetric energy density, hydrogen should be compressed for practical storage and transportation purposes. Recently, electrochemical hydrogen compressors (EHCs) have been developed that are c ...
The present paper is focused on the development of an accurate 1D numerical model for pig motion in two-phase flow. The focus will be on the liquid slug that is accumulated in front of the pig, the so-called pig-generated slug. Under the assumption of a stratified flow, we first ...
Based on our earlier experimental work on the effect of surfactants on air-water flow in vertical pipes with internal diameters of 34 mm, 50 mm, and 80 mm, we create a mechanistic annular flow model for the pressure gradient. The major effect of the addition of surfactants is the ...
An experimental study has been made of oil-water core-annular flow in a horizontal pipe with special attention for the influence of the oil viscosity on the pressure drop. For that purpose a heating system has been installed and configured that is able to control the oil temperat ...
Stratified gas-liquid flow is a flow regime typically encountered in multiphase pipelines. The understanding and modeling of this regime is of engineering importance especially for the oil and gas industry. In this work, simulations have been conducted for stratified air-water fl ...
We present experimental and numerical results for by-pass pigging under low-pressure conditions which aided the design of a speed-controlled pig (Pipeline Inspection Gauge). Our study was carried out using air as working fluid at atmospheric pressure in a 52 mm diameter pipe of 6 ...
Based on the success of foam in subsurface applications it is of interest to investigate whether foam can also help overcome liquid management problems in surface flowlineriser systems. Therefore, flow experiments were carried out in the flow loop at the Shell Technology Centre A ...
We have developed and applied an Eulerian-Lagrangian model for the transport, formation, break-up, deposition and re-entrainment of particle agglomerates. In this paper, we focus on agglomeration and break-up. Simulations were carried out to investigate what changes in the turbul ...
A finite volume discretization of the incompressible two-fluid model in four-equation form is proposed for simulating roll waves appearing in multiphase pipelines. The new formulation has two important advantages compared to existing roll wave simulators: (i) it is conservative b ...
One-dimensional models for multiphase flow in pipelines are commonly discretised using first-order Finite Volume (FV) schemes, often combined with implicit time-integration methods. While robust, these methods introduce much numerical diffusion depending on the number of grid poi ...
In this study we investigate the development of a speed controlled pig in a low pressure pipeline. This is known to be a challenge due to the compressibility of the gas which can induce velocity surges of the pig. In order to reduce these velocity surges, a speed controlled pig w ...
An experimental and numerical study has been made of oil-water core-annular flow in a horizontal pipe with special attention for the turbulence in the water. An experimental set-up was built to be able to compare numerical predictions with detailed experimental results. The oil d ...