Alkali-activated materials (AAMs) are a class of potentially eco-friendly construction materials that can contribute to reduce the environmental impact of the construction sector by offering an alternative to Portland cement (PC). With the rapid development of both computational capabilities and theoretical insights into alkali-activation reaction processes, there has been a surge in research activities worldwide, leading to a growing demand for computational methods that can describe different characteristics of AAMs. This review summarizes the collective efforts made in the past two decades on this topic, and highlights the most relevant results and advances in the aspects of atomistic simulation, thermodynamic modeling, microstructure/−based simulation, and multi-scale modeling. The gaps and challenges in current numerical research on AAMs are pointed out and discussed in comparison with PC-based materials. This review aims to provide a critical overview of the state-of-the-art in modeling and simulating AAMs, while also outlining potential avenues for future development.
@en