M.R. Vogt
15 records found
1
Graphene transparent electrode (GTE) has been attracting much attention due to fascinating physical properties. However, the extensive deployment of copper foil within GTE production has imparted substantial environmental burden. This paper is a cradle-to-gate life cycle assessme
...
Lead halide perovskites are a promising class of materials for solar cell applications. The perovskite bandgap depends on the material composition and is highly tunable. Opto-electrical device modelling is commonly used to find the optimum perovskite bandgap that maximizes device
...
The surge in global solar photovoltaic (PV) deployment as a measure to combat climate change is undeniable. However, this growth comes with its own set of challenges, particularly concerning the materials required for silicon-based PV modules. In this study, we quantify future ma
...
The tandem PV technology can potentially increase the efficiency of PV modules over 30%. To design efficient modules, a quantification of the different losses is important. Herein, a model for quantifying the energy loss mechanisms in PV systems under real-world operating conditi
...
The photovoltaic (PV) module energy rating standard series IEC 61853 does not cover bifacial PV modules. However, the market share of bifacial PV modules has dramatically increased in recent years and is projected to grow. This work demonstrates how Parts 3 and 4 of the IEC 61853
...
The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculatin
...
We introduce a novel simulation tool capable of calculating the energy yield of a PV system based on its fundamental material properties and using self-consistent models. Thus, our simulation model can operate without measurements of a PV device. It combines wave and ray optics a
...
We investigate gentle front side textures for perovskite/silicon tandem solar cells. These textures enhance the absorption of sunlight, yet are sufficiently gentle to allow deposition of an efficient perovskite top cell. We present a tandem solar cell with such gentle texture, fa
...
The current climate and energy crisis urgently needs solar cells with efficiencies above the 29% single junction efficiency bottleneck. Silicon/perovskite tandem solar cells are a solution, which is attracting much attention. While silicon/perovskite tandem cells in 2-terminal an
...
Interlaboratory comparison of angular-dependent photovoltaic device measurements
Results and impact on energy rating
This paper presents the results from an extensive interlaboratory comparison of angular-dependent measurements on encapsulated photovoltaic (PV) cells. Twelve international laboratories measure the incident angle modifier of two unique PV devices. The absolute measurement agreeme
...
The perovskite solar cell (PSC) is one of the most dramatic inventions in the field of photovoltaics in the last half century. The device has rapidly risen from a few percent to efficiencies of over 24% [1] in little over a decade. This rapid development is due in part to the wid
...
The IEC 61853 standard series "Photovoltaic (PV) module performance testing and energy rating" aims to provide a standardized measure for PV module performance, namely the Climate Specific Energy Rating (CSER). An algorithm to calculate CSER is specified in part 3 based on labora
...
The most successful high efficiency design, and one of the oldest, is the multi-junction solar cell. There are a range of multijunction solar cell terminal configurations, the specificities of which are reviewed, concluding with noting the increased attention being given to three
...