NB

N. Bakhshaee Babaroud

8 records found

Technologies that are employed to record and modulate neural activities are rapidly advancing. This advancement could bring breakthroughs in our understanding of brain function and enable scientists to diagnose and treat neural diseases and disorders. Combining multiple modalitie ...
In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP pr ...
Multimodal platforms combining electrical neural recording and stimulation, optogenetics, optical imaging, and magnetic resonance (MRI) imaging are emerging as a promising platform to enhance the depth of characterization in neuroscientific research. Electrically conductive, opti ...
In this paper, we investigate the long-term adhesion strength and barrier property of our recently proposed encapsulation stack that includes PDMS-Parylene C and PECVD interlayers (SiO2 and SiC) for adhesion improvement. To evaluate the adhesion strength of our proposed stack, th ...
Our limited understanding of the nervous system forms a bottleneck which impedes the effective treatment of neurological disorders. In order to improve patient outcomes it is highly desirable to interact with the nervous tissue at the resolution of individual cells. As neurons nu ...
Parylene-C has been used as a substrate and encapsulation material for many implantable medical devices. However, to ensure the flexibility required in some applications, minimize tissue reaction, and protect parylene from degradation in vivo an additional outmost layer of polydi ...
Parylene-C has been used as a substrate and encapsulation material for many implantable medical devices. However, to ensure the flexibility required in some applications, minimize tissue reaction, and protect parylene from degradation in vivo an additional outmost layer of polydi ...
Active implantable medical devices have been developed for diagnosis, monitoring and treatment of large variety of neural disorders. Since the mechanical properties of these devices need to be matched to the tissue, soft materials, such as polymers are often preferred as a substr ...