In our toolbox of quantum gates for spin qubits, the SWAP-family gates based on Heisenberg exchange coupling are quite versatile: the SWAP gate can help solve the connectivity problem by realizing both short- and long-range spin state transfer, while the (Formula presented) gate
...
In our toolbox of quantum gates for spin qubits, the SWAP-family gates based on Heisenberg exchange coupling are quite versatile: the SWAP gate can help solve the connectivity problem by realizing both short- and long-range spin state transfer, while the (Formula presented) gate is a basic two-qubit entangling gate. Here we demonstrate a SWAP gate in a double quantum dot in isotopically enriched silicon in the presence of a micromagnet. We achieve a two-orders-of-magnitude adjustable ratio between the exchange coupling J and the Zeeman energy difference ΔEz, overcoming a major obstacle for a high-fidelity SWAP gate. We also calibrate the single-qubit local phases, evaluate the logical-basis fidelity of the SWAP gate, and further analyze the dominant error sources. These results pave the way for high-fidelity SWAP gates and processes based on them, such as quantum communication on chip and quantum simulation.@en