JR
J.K. Ryu
8 records found
1
The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution mag
...
Ring-shaped structural maintenance of chromosomes (SMC) complexes like condensin and cohesin extrude loops of DNA. It remains, however, unclear how they can extrude DNA loops in chromatin that is bound with proteins. Here, we use in vitro single-molecule visualization to show tha
...
Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental
...
Structural maintenance of chromosome (SMC) protein complexes are able to extrude DNA loops. While loop extrusion constitutes a fundamental building block of chromosomes, other factors may be equally important. Here, we show that yeast cohesin exhibits pronounced clustering on DNA
...
Publisher Correction
The condensin holocomplex cycles dynamically between open and collapsed states (Nature Structural & Molecular Biology, (2020), 27, 12, (1134-1141), 10.1038/s41594-020-0508-3)
An amendment to this paper has been published and can be accessed via a link at the top of the paper.@en
Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor r
...
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+-evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendo
...