AG
A. Gautam
6 records found
1
Lithium argyrodite thiophosphate superionic conductors are being explored as promising solid electrolytes for all-solid-state batteries, primarily due to their high ionic conductivity and ease of processing. Yet, these electrolytes present challenges such as chemical instability
...
Lithium argyrodite solid electrolytes have attracted ever-increasing attention for all-solid-state batteries due to their high ionic conductivity and low cost. However, the relation between structure and ionic transport for the halogen-rich lithium argyrodites under different syn
...
The development of improved solid electrolytes (SEs) plays a crucial role in the advancement of bulk-type solid-state battery (SSB) technologies. In recent years, multicomponent or high-entropy SEs are gaining increased attention for their advantageous charge-transport and (elect
...
Due to their high ionic conductivity, lithium-ion conducting argyrodites show promise as solid electrolytes for solid-state batteries. Aliovalent substitution is an effective technique to enhance the transport properties of Li6PS5Br, where aliovalent Si subs
...
The interlaboratory comparability and reproducibility of all-solid-state battery cell cycling performance are poorly understood due to the lack of standardized set-ups and assembly parameters. This study quantifies the extent of this variability by providing commercially sourced
...
Lithium argyrodite superionic conductors have recently gained significant attention as potential solid electrolytes for all-solid-state batteries because of their high ionic conductivity and ease of processing. Promising aspects of these materials are the ability to introduce hal
...