TA
T. Alderliesten
31 records found
1
A Tournament of Transformation Models
B-Spline-based vs. Mesh-based Multi-Objective Deformable Image Registration
The transformation model is an essential component of any deformable image registration approach. It provides a representation of physical deformations between images, thereby defining the range and realism of registrations that can be found. Two types of transformation models ha
...
PURPOSE: Without a clear definition of an optimal treatment plan, no optimization model can be perfect. Therefore, instead of automatically finding a single “optimal” plan, finding multiple, yet different near-optimal plans, can be an insightful approach to support radiation onco
...
Purpose: Deformable image registration (DIR) can benefit from additional guidance using corresponding landmarks in the images. However, the benefits thereof are largely understudied, especially due to the lack of automatic landmark detection methods for three-dimensional (3D) med
...
Mini-Batching, Gradient-Clipping, First-versus Second-Order
What Works in Gradient-Based Coefficient Optimisation for Symbolic Regression'
The aim of Symbolic Regression (SR) is to discover interpretable expressions that accurately describe data. The accuracy of an expression depends on both its structure and coefficients. To keep the structure simple enough to be interpretable, effective coefficient optimisation be
...
In a parallel EA one can strictly adhere to the generational clock, and wait for all evaluations in a generation to be done. However, this idle time limits the throughput of the algorithm and wastes computational resources. Alternatively, an EA can be made asynchronous parallel.
...
In this work, we show that simultaneously training and mixing neural networks is a promising way to conduct Neural Architecture Search (NAS). For hyperparameter optimization, reusing the partially trained weights allows for efficient search, as was previously demonstrated by the
...
Real-world problems are often multi-objective, with decision-makers unable to specify a priori which trade-off between the conflicting objectives is preferable. Intuitively, building machine learning solutions in such cases would entail providing multiple predictions that span an
...
Deep learning algorithms have become the golden standard for segmentation of medical imaging data. In most works, the variability and heterogeneity of real clinical data is acknowledged to still be a problem. One way to automatically overcome this is to capture and exploit this v
...
To achieve excellent performance with modern neural networks, having the right network architecture is important. Neural Architecture Search (NAS) concerns the automatic discovery of task-specific network architectures. Modern NAS approaches leverage super-networks whose subnetwo
...
Genetic programming (GP) is one of the best approaches today to discover symbolic regression models. To find models that trade off accuracy and complexity, the non-dominated sorting genetic algorithm II (NSGA-II) is widely used. Unfortunately, it has been shown that NSGA-II can b
...
Even if a Multi-modal Multi-Objective Evolutionary Algorithm (MMOEA) is designed to find solutions well spread over all locally optimal approximation sets of a Multi-modal Multi-objective Optimization Problem (MMOP), there is a risk that the found set of solutions is not smoothly
...
Neural Architecture Search (NAS) has recently become a topic of great interest. However, there is a potentially impactful issue within NAS that remains largely unrecognized: noise. Due to stochastic factors in neural network initialization, training, and the chosen train/validati
...
Model-Based Evolutionary Algorithms (MBEAs) can be highly scalable by virtue of linkage (or variable interaction) learning. This requires, however, that the linkage model can capture the exploitable structure of a problem. Usually, a single type of linkage structure is attempted
...
Interactive Education on Sleep Hygiene with a Social Robot at a Pediatric Oncology Outpatient Clinic
Feasibility, Experiences, and Preliminary Effectiveness
Objectives: Children with cancer often experience sleep problems, which are associated with many negative physical and psychological health outcomes, as well as with a lower quality of life. Therefore, interventions are strongly required to improve sleep in this population. We ev
...
Genetic Programming (GP) can make an important contribution to explainable artificial intelligence because it can create symbolic expressions as machine learning models. Nevertheless, to be explainable, the expressions must not become too large. This may, however, limit their pot
...
Deep Neural Networks (DNNs) have the potential for making various clinical procedures more time-efficient by automating medical image segmentation. Due to their strong, in some cases human-level, performance, they have become the standard approach in this field. The design of the
...
We propose a novel surrogate-assisted Evolutionary Algorithm for solving expensive combinatorial optimization problems. We integrate a surrogate model, which is used for fitness value estimation, into a state-of-the-art P3-like variant of the Gene-Pool Optimal Mixing Algorithm (G
...
Purpose: Current phantoms used for the dose reconstruction of long-term childhood cancer survivors lack individualization. We design a method to predict highly individualized abdominal three-dimensional (3-D) phantoms automatically. Approach: We train machine learning (ML) models
...
Feature construction can substantially improve the accuracy of Machine Learning (ML) algorithms. Genetic Programming (GP) has been proven to be effective at this task by evolving non-linear combinations of input features. GP additionally has the potential to improve ML explainabi
...
There has recently been great progress in automatic segmentation of medical images with deep learning algorithms. In most works observer variation is acknowledged to be a problem as it makes training data heterogeneous but so far no attempts have been made to explicitly capture t
...