A novel strategy of liquid fermentation using anaerobic dynamic membrane reactor (AnDMBR) was proposed to enhance volatile fatty acids (VFAs) production from sewage sludge. Results indicated that liquid sludge fermentation in AnDMBR had the potential in commercial VFAs production. VFAs productivity and concentration as well as substrate conversion rate could reach as high as 7.8 kg VFA−COD/m3 d, 60 g/L and 0.38 kg VFA−COD/kg VS, respectively. Moreover, dynamic membrane was stably operated for approximately 70 days. During the operational period, membrane flux was increased from 6.25 to 25 L/m2 d and only once online membrane cleaning was implemented. Results of microbial analyses showed bacterial richness and evenness in AnDMBR were increased by membrane separation and organic loading rate (OLR) increase, but reduced by excessive OLR, which should led the variations in the performances of AnDMBR. Furthermore, the necessity of liquid sludge fermentation for VFAs production was further confirmed by economic assessment and the bioavailability analysis of the residual solids in pretreated sludge. The residual solid was proved to be not conducive to enhance VFAs yield. Conversely, the energy consumption for VFAs production could be reduced from over 100 to below 20 kwh/kg VFAs by avoiding the “useless” residual solids entering into fermenters.
@en