OH

Otmar Hilliges

7 records found

Authored

We propose GazeNeRF, a 3D-aware method for the task of gaze redirection. Existing gaze redirection methods operate on 2D images and struggle to generate 3D consistent results. Instead, we build on the intuition that the face region and eyeballs are separate 3D structures that mov ...
Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding fac ...

This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information w ...

Flycon

Real-time environment-independent multi-view human pose estimation with aerial vehicles

We propose a real-time method for the infrastructure-free estimation of articulated human motion. The approach leverages a swarm of camer aequipped flying robots and jointly optimizes the swarm's and skeletal states, which include the 3D joint positions and a set of bones. Our ...

In this letter, we propose an algorithm for the training of neural network control policies for quadrotors. The learned control policy computes control commands directly from sensor inputs and is, hence, computationally efficient. An imitation learning algorithm produces a policy ...
We propose a method for real-time trajectory generation with applications in aerial videography. Taking framing objectives, such as position of targets in the image plane, as input, our method solves for robot trajectories and gimbal controls automatically and adapts plans in rea ...

We propose a method for automated aerial videography in dynamic and cluttered environments. An online receding horizon optimization formulation facilitates the planning process for novices and experts alike. The algorithm takes high-level plans as input, which we dub virtual r ...