While several works have explored the application of deep learning for efficient profiled side-channel analysis, explainability, or, in other words, what neural networks learn remains a rather untouched topic. As a first step, this paper explores the Singular Vector Canonical Cor
...
While several works have explored the application of deep learning for efficient profiled side-channel analysis, explainability, or, in other words, what neural networks learn remains a rather untouched topic. As a first step, this paper explores the Singular Vector Canonical Correlation Analysis (SVCCA) tool to interpret what neural networks learn while training on different side-channel datasets, by concentrating on deep layers of the network. Information from SVCCA can help, to an extent, with several practical problems in a profiled side-channel analysis like portability issue and criteria to choose a number of layers/neurons to fight portability, provide insight on the correct size of training dataset and detect deceptive conditions like over-specialization of networks.
@en