MK
Markus Koschi
5 records found
1
Ensuring that autonomous vehicles do not cause accidents remains a challenge. We present a formal verification technique for guaranteeing legal safety in arbitrary urban traffic situations. Legal safety means that autonomous vehicles never cause accidents although other traffic p
...
Self-driving vehicles must be able to safely navigate in any traffic scenario. However, all situations are different; even when clustering them, an impractical amount of scenarios would have to be verified. Thus, we propose a safety framework to verify the safety of each planned
...
Falsification aims to disprove the safety of systems by providing counter-examples that lead to a violation of safety properties. In this work, we present two novel falsification methods to reveal safety flaws in adaptive cruise control (ACC) systems of automated vehicles. Our me
...
Set-based predictions can ensure the safety of planned motions, since they provide a bounded region which includes all possible future states of nondeterministic models of other traffic participants. However, while autonomous vehicles are tested in urban environments, a set-based
...
Safety is the most important aspect of systems which have to perform collision-free motions in dynamic environments. Formal verification methods, such as reachability analysis, are capable of guaranteeing safety for a given model and given assumptions (e. g. bounded velocity and
...