MG
Mingxing Guo
6 records found
1
In present work, the formation, evolution, and distribution of the primary Fe-rich phase in an Al–Mg–Si–Cu–Zn–Fe–Mn alloy are coupling controlled by ultrasonic melt treatment (USMT) and thermomechanical processing (TMP). It is shown in the results that the size of grains and Fe-r
...
A new non-isothermal pre-aging treatment was proposed and utilized in Al-Mg-Si-Cu-Zn alloys, together with natural aging and artificial aging. The influence of cooling rates on subsequent precipitation behaviors was investigated by experimental and thermodynamic simulations. The
...
The intergranular corrosion (IGC) resistance of age-hardening Al–Mg–Si–Cu alloys is closely related to the precipitation behavior adjacent to grain boundaries. In this study, we proposed to regulate the interaction of solute atoms and solute partitioning of Zn-containing Al–Mg–xS
...
The effect of Sn micro-alloying on microstructure evolution, formability and precipitation behaviour of Al-Mg-Si-Cu-Zn alloys were systematically studied by experimental techniques and theoretical calculations. Results show that Sn addition can accelerate both the precipitation a
...
Synergy of Ni micro-alloying and thermomechanical processing on the phase distribution, formability and bendability of Al–Mg–Si–Cu–Zn–Fe–Mn alloys was systematically studied in this paper. With the addition of micro-alloying Ni, the Ni-containing Fe-rich phase can be formed, whic
...
The coupling control of quenching rate and pre-aging and its positive effect on the age-hardening response of Al–Mg–Si–Cu–Zn–Fe–Mn alloy was systematically investigated. The larger and more stable solute clusters can be formed in alloy with fast age-hardening response by using th
...