Circular Image

9 records found

The control efficacy of classical periodic forcing and deep reinforcement learning (DRL) is assessed for a turbulent separation bubble (TSB) at Reτ=180 on the upstream region before separation occurs. The TSB can resemble a separation phenomenon naturally arising in wings, and a ...
Purpose: Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall region. However, its use is limited in flows that have high non-equilibrium effects like separati ...
The increase in emissions associated with aviation requires deeper research into novel sensing and flow-control strategies to obtain improved aerodynamic performances. In this context, data-driven methods are suitable for exploring new approaches to control the flow and develop m ...
With the recent advances in machine learning, data-driven strategies could augment wall modeling in large eddy simulation (LES). In this work, a wall model based on gradient boosted decision trees is presented. The model is trained to learn the boundary layer of a turbulent chann ...
Simulations of turbulent fluid flow around long cylindrical structures are computationally expensive because of the vast range of length scales, requiring simplifications such as dimensional reduction. Current dimensionality reduction techniques such as strip-theory and depth-ave ...
A machine-learning based closure is explored for the prediction of the turbulent wake of flow past a circular cylinder at a high Reynolds number. We show that classic turbulence closures based on the turbulent-viscosity hypothesis are not capable of modelling the non-linear relat ...
Turbulent flow evolution and energy cascades are significantly different in two-dimensional (2-D) and three-dimensional (3-D) flows. Studies have investigated these differences in obstacle-free turbulent flows, but solid boundaries have an important impact on the cross-over from ...
The wake behind a bluff body constitutes an intrinsically three-dimensional flow and it is known that two-dimensional simulations yield to an unphysical prediction of the body forces because of the nature of the two-dimensional Navier-Stokes equations. However, three-dimensional ...