YZ
Y. Zhang
4 records found
1
State-of-the-art ASRs show suboptimal performance for child speech. The scarcity of child speech limits the development of child speech recognition (CSR). Therefore, we studied child-to-child voice conversion (VC) from existing child speakers in the dataset and additional (new) c
...
Automatic speech recognition (ASR) should serve every speaker, not only the majority “standard” speakers of a language. In order to build inclusive ASR, mitigating the bias against speaker groups who speak in a “non-standard” or “diverse” way is crucial. We aim to mitigate the bi
...
Automatic speech recognition (ASR) systems have seen substantial improvements in the past decade; however, not for all speaker groups. Recent research shows that bias exists against different types of speech, including non-native accents, in state-of-the-art (SOTA) ASR systems. T
...
One important problem that needs tackling for wide deployment of Automatic Speech Recognition (ASR) is the bias in ASR, i.e., ASRs tend to generate more accurate predictions for certain speaker groups while making more errors on speech from other groups. We aim to reduce bias aga
...