DB

Dennis Bruijnen

4 records found

Learning for Precision Motion of an Interventional X-ray System

Add-on Physics-Guided Neural Network Feedforward Control

Tracking performance of physical-model-based feedforward control for interventional X-ray systems is limited by hard-to-model parasitic nonlinear dynamics, such as cable forces and nonlinear friction. In this paper, these nonlinear dynamics are compensated using a physics-guided ...
The performance of a feedforward controller is primarily determined by the extent to which it can capture the relevant dynamics of a system. The aim of this paper is to develop an input-output linear parameter-varying (LPV) feedforward parameterization and a corresponding data-dr ...

Physics-Guided Neural Networks for Feedforward Control

An Orthogonal Projection-Based Approach

Unknown nonlinear dynamics can limit the performance of model-based feedforward control. The aim of this paper is to develop a feedforward control framework for systems with unknown, typically nonlinear, dynamics. To address the unknown dynamics, a physics-based feedforward model ...

Unifying Model-Based and Neural Network Feedforward

Physics-Guided Neural Networks with Linear Autoregressive Dynamics

Unknown nonlinear dynamics often limit the tracking performance of feedforward control. The aim of this paper is to develop a feedforward control framework that can compensate these unknown nonlinear dynamics using universal function approximators. The feedforward controller is p ...