Wind and solar photovoltaic (PV) power form vital parts of the energy transition toward renewable energy systems. The rapid development of these two renewables represents an enormous infrastructure construction task including both power generation and its associated electrical grid systems, which will generate demand for metal resources. However, most research on material demands has focused on their power generation systems (wind turbines and PV panels), and few have studied the associated electrical grid systems. Here, we estimate the global metal demands for electrical grid systems associated with wind and utility-scale PV power by 2050, using dynamic material flow analysis based on International Energy Agency's energy scenarios and the typical engineering parameters of transmission grids. Results show that the associated electrical grids require large quantities of metals: 27-81 Mt of copper cumulatively, followed by 20-67 Mt of steel and 11-31 Mt of aluminum. Electrical grids built for solar PV have the largest metal demand, followed by offshore and onshore wind. Power cables are the most metal-consuming electrical components compared to substations and transformers. We also discuss the decommissioning issue of electrical grids and their recovery potential. This study would deepen the understanding of the nexus between renewable energy, grid infrastructure, and metal resources.
@en