M.K. Chowdhury
11 records found
1
Climate change is responsible for global shifts in precipitation patterns and an overall in-crease in global temperatures. The transi-tions are anticipated to modify the river hydro-graph and sea level. The changes to the hy-drograph are also likely to influence sediment flux. Th
...
Tipping occurs when a critical point is reached, beyond which a perturbation leads to persistent system change. Here, we present observational indications demonstrating presently ongoing noise-tipping of a real-world system. Noise in a river system is associated with the changing
...
Channel bed incision in engineered rivers
Characteristics and mitigation
Engineered rivers are often prone to channel bed incision. This decreases the channel-floodplain connection, hampers navigation where nonerodible reaches increasingly protrude from the bed, and can destabilize structures. Here we inventorize causes and characteristics of channel
...
A bifurcation in an engineered river system (i.e., fixed planform and width) has fewer degrees of freedom in its response to interventions and natural changes than a natural bifurcation system. Our objective is to provide insight into how a bifurcation in an engineered river resp
...
River bifurcations divide the water and sediment over two downstream branches or bifurcates. As the changing climate adjusts the boundary conditions (i.e., base level, hydrograph, and sediment flux) for bifurcations, it will affect their flow and sediment partitioning over the bi
...
We assess whether an observed sudden change in trend of the flow partitioning over the downstream branches of a bifurcation system in the Dutch Rhine River, following two consecutive peak flow events, is evidence of system tipping. For this purpose, we analyze field data of the b
...
Sediment transport capacity and supply of sediment to a river channel increase significantly during peak flow events. Here we study how a river bifurcation system (partitioning water and sediment over its downstream branches) responds to peak flow events. We focus on the Pannerde
...
Spatial and temporal patterns in three-dimensional flow structure are linked to channel processes and morphology in many environments. However, there is not yet an understanding of how the flow structure is influenced by channelized and gradually distributed lateral outflows that
...