Airport security checkpoints are the most important bottleneck in airport operations, but few studies aim to empirically understand them better. In this work we address this lack of data-driven quantitative analysis and insights about the security checkpoint process. To this end,
...
Airport security checkpoints are the most important bottleneck in airport operations, but few studies aim to empirically understand them better. In this work we address this lack of data-driven quantitative analysis and insights about the security checkpoint process. To this end, we followed a total of 2277 passengers through the security checkpoint process at Rotterdam The Hague Airport (RTM), and published detailed timing data about their journey through the process. This dataset is unique in scientific literature, and can aid future researchers in the modelling and analysis of the security checkpoint. Our analysis showed important differences between six identified passenger types. Business passengers were found to be the fastest group, while passengers with reduced mobility (PRM) and families were the slowest two groups. We also identified events that hindered the performance of the security checkpoint, in which groups of passengers had to wait long for security employees or other passengers. A total of 335 such events occurred, with an average of 2.3 passengers affected per event. It was found that a passenger that had a high luggage drop time was followed by an event in 27% of the cases, which was the most frequent cause. To mitigate this waiting time of subsequent passengers in the security checkpoint process, we performed an experiment with a so-called service lane. This lane was used to process passengers that are expected to be slow, while the remaining lanes processed the other passengers. It was found that the mean throughput of the service lane setups was higher than the average throughput of the standard lanes, making it a promising setup to investigate further.
@en