L. Botto
21 records found
1
Particles trapped at a fluid-fluid interface by capillary forces can form a monolayer that jams and buckles when subject to uniaxial compression. Here we investigate experimentally the buckling mechanics of monolayers of millimeter-sized rigid plates trapped at a planar fluid-flu
...
Settling velocity statistics for dilute, non-Brownian homogeneous suspensions of polydisperse spheres having a log-normal size distribution are generated from Stokesian dynamics simulations, as a function of the total volume fraction and normalised width of the particle size dist
...
Through boundary integral simulations, we investigate, in the creeping flow limit and in the absence of Brownian noise, the effects of Navier slip on the orientational dynamics and effective shear viscosity of a semidilute suspension of two-dimensional particles with either circu
...
Through boundary integral simulations and asymptotic analysis, we investigate the effect of a finite Navier slip length on the rheological proprieties of a dilute two-dimensional suspension of plate-like particles in the creeping flow limit. Specifically, we study the effects of
...
Buckling induced by viscous flow changes the shape of sheetlike nanomaterial particles suspended in liquids. This instability at the particle scale affects collective behavior of suspension flows and has many technological and biological implications. Here, we investigated the ef
...
Combining molecular dynamics (MD) and continuum simulations, we study the dynamics of propagation of a peeling front in a system composed of multilayered graphene nanosheets completely immersed in water. Peeling is induced by lifting one of the nanosheet edges with an assigned pu
...
Simulation of interacting elastic sheets in shear flow
Insights into buckling, sliding, and reassembly of graphene nanosheets in sheared liquids
In liquid-based material processing, hydrodynamic forces are known to produce severe bending deformations of two-dimensional (2D) materials such as graphene. The non-linear rotational and deformation dynamics of these atomically thin sheets is extremely sensitive to hydrodynamic
...
Natural sediment flocs are fragile and highly heterogeneous aggregates of biogenic and minerogenic material typically with high porosity and low density. In aquatic environments dominated by fine, cohesive or mixed sediments they can dominate suspended sediment flux. Consequently
...
TU Delft COVID-app
A tool to democratize CFD simulations for SARS-CoV-2 infection risk analysis
This work describes a modelling approach to SARS-CoV-2 dispersion based on experiments. The main goal is the development of an application integrated in Ansys Fluent to enable computational fluid dynamics (CFD) users to set up, in a relatively short time, complex simulations of v
...
Peeling under large bending deformations
Follower versus fixed loads. A unified approach for concentrated or distributed loads
In the non-dissipative regime, the potential energy is the difference between the strain energy of the deforming solid and the work done by the external forces. For configuration-dependent external forces, whose direction is perpendicular to the deformed shape, we obtain a simple
...
The adsorption of graphene-oxide (GO) nanoparticles at the interface between water and vapor was analyzed using all-atom molecular simulations for single and multiple particles. For a single GO particle, our results indicate that the adsorption energy does not scale linearly with
...
Alignment of a flexible platelike particle in shear flow
Effect of surface slip and edges
Rigid platelike particles displaying interfacial slip can attain a constant orientation in a shear flow when the slip length is sufficiently large. But actual thin particles such as single-layer graphene are flexible and prone to bending deformations when exposed to shear stress.
...
Using molecular dynamics simulations we investigate the shear-induced rotational dynamics of a Brownian nanographene (hexabenzocoronene) freely suspended in a liquid. We demonstrate that, owing to a finite hydrodynamic slip at the molecular surface, these flat molecules tend to a
...
The classical theory by Jeffery predicts that, in the absence of Brownian fluctuations, a thin rigid platelet rotates continuously in a shear flow, performing periodic orbits. However, a stable orientation is possible if the surface of the platelet displays a hydrodynamic slip le
...
The large-scale processing of nanomaterials such as graphene and MoS2 relies on understanding the flow behaviour of nanometrically-thin platelets suspended in liquids. Here we show, by combining non-equilibrium molecular dynamics and continuum simulations, that rigid n
...
The recently popularized method of rotary jet spinning (RJS) or centrifugal spinning is investigated to evaluate the rheological limitations of polymer solutions and melts to optimal spinnability. The influence of Newtonian or non-Newtonian behavior of the polymer on spinnability
...
FIPI
A fast numerical method for the simulation of particle-laden fluid interfaces
Solid particles can adhere to fluid interfaces, modifying interfacial properties such as the surface tension and the surface elasticity. We here describe a new simulation method, the Fast Interface Particle Interaction (FIPI) method, capable of simulating on commodity hardware up
...
The nucleation and growth of liquid droplets on solid substrates have received much attention because of the significant relevance of these multiphase processes to both nature and practical applications. There have been extensive studies on the condensation of water from the air
...
Micromechanics of liquid-phase exfoliation of a layered 2D material
A hydrodynamic peeling model
We present a micromechanical analysis of flow-induced peeling of a layered 2D material suspended in a liquid, for the first time accounting for realistic hydrodynamic loads. In our model, fluid forces trigger a fracture of the inter-layer interface by lifting a flexible “flap” of
...
Liquid exfoliation of multilayer graphene in sheared solvents
A molecular dynamics investigation
Liquid-phase exfoliation, the use of a sheared liquid to delaminate graphite into few-layer graphene, is a promising technique for the large-scale production of graphene. However, the microscale and nanoscale fluid-structure processes controlling the exfoliation are not fully und
...