Ed

E. de Klerk

32 records found

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser et al. (2017) constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proved by the authors that the sequence converges to the optimal value. In t ...
We study the convergence rate of a hierarchy of upper bounds for polynomial optimization problems, proposed by Lasserre, and a related hierarchy by de Klerk, Hess, and Laurent. For polynomial optimization over the hypercube, we show a refined convergence analysis for the first hi ...
The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, option pricing in finance, co ...
The bounded degree sum-of-squares (BSOS) hierarchy of Lasserre et al. (EURO J Comput Optim 1–31, 2015) constructs lower bounds for a general polynomial optimization problem with compact feasible set, by solving a sequence of semi-definite programming (SDP) problems. Lasserre, Toh ...
We provide a monotone nonincreasing sequence of upper bounds f H k (k≥1) fkH(k≥1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube in ℝn. The novelty with respect to the converging sequence of upper bounds in Lasse ...
We consider the gradient (or steepest) descent method with exact line search applied to a strongly convex function with Lipschitz continuous gradient. We establish the exact worst-case rate of convergence of this scheme, and show that this worst-case behavior is exhibited by a ce ...
It was recently shown by [Halická et al. 2002). On the convergence of the central path in semidefinite optimization. SIAM J. Optimization, 12(4), 1090-1099] that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic ...
A form p on (homogeneous n-variate polynomial) is called positive semidefinite (p.s.d.) if it is nonnegative on . In other words, the zero vector is a global minimizer of p in this case. The famous 17th conjecture of Hilbert [Bull. Amer. Math. Soc. (N.S.), 37 (4) (2000) 407] (lat ...
Abstract The problem of colouring a k-colourable graph is well-known to be NP-complete, for k 3. The MAX-k-CUT approach to approximate k-colouring is to assign k colours to all of the vertices in polynomial time such that the fraction of `defect edges' (with endpoints of the same ...