ML

Monique Laurent

3 records found

We study the convergence rate of a hierarchy of upper bounds for polynomial optimization problems, proposed by Lasserre, and a related hierarchy by de Klerk, Hess, and Laurent. For polynomial optimization over the hypercube, we show a refined convergence analysis for the first hi ...
The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, option pricing in finance, co ...
We provide a monotone nonincreasing sequence of upper bounds f H k (k≥1) fkH(k≥1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube in ℝn. The novelty with respect to the converging sequence of upper bounds in Lasse ...